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1 1SPCTEOABSTRACT

.In an earlier paper, Duffin studied a model for the transverse vibrations

of a string of n beads. This note looks at the same question in a more

general setting. It establishes the existence of special solutions O

corresponding to high frequency oscillations which are "positive" in the

coordinate system chosen as well as other "non-positive" solutions.
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SIGNIFICANCE AND EXPLANATION

In an earlier paper, Duffin modelled the transverse vibration of a string

of n beads by the system of ordinary differential equations

mix = fi(xi_l + xi) + fi+i(xi + xi+1), 1 4 i 4 n

where the positive coordinate directions are as indicated on page 1. He

established the existence of families of solutions all components of which are

initially positive (in this coordinate system) with zero velocity, and after a

time interval T all components have zero amplitude. We prove the existence

of such highly oscillatory solutions in a more general setting and also study

the existence of nonpositive solutions.

p

The responsibility for the wording and views expressed in this descriptive
summary lies with I4RC, and not with the author of this report.
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A NOTE ON A THEOREM OF R. DUFFIN

Paul H. Rabinowitz

11. Introduction

In M, R. Duffin studied the transverse vibrations of a string of n beads

stretched between two fixed end points. Assuming that longitudinal motion was constrained

by channels and that tension only depends on the extension of the string segment, the

motion was modelled by the system of equations

(1m m1 xz - f1.(x1. 1 + x i) + f W x +xWn

where the positive coordinate directions are as indicated in the figure below,

x0 3 xm- x and mi > 0 is the mass of the ith bead. Let P denote the cone of

X".

points have displacements of opposite sign relative to . Duff;in used an elegant

argumnent based on the Brouwer Fixed Point Theorem to prove

Theorem 1.2. Suppose the functions f1. are Lipschitz continuous and there is a

constant h > 0 such that

(1.3) -f1 (a) he I 1 4 n + 1

Sponsored by the United States Army under Contract No. DAAG29-8O-C-0041 and by the
National Science Foundation under Grant No. NCS-81105S6. Reproduction in whole or in pa."
is permitted for any purpose of the United States Government.

...ievetr n ~. ..... x 1.... . nl i )O } hsi h a.v .. '.

cood...........................s......,...t...s aov th lie, , ii:

joiningthe enpointsof thestringx..............................ad.acet."...



for all s 0 0. Let S R" be a surface bounding a starshaped neighborhood of 0. Then

there is an x* e S P and T* > 0 such that the initial value problem for (1.1) with

x(O) = x and x'{,)) U has a solution x(t) such that x(T ) = 0.

Stated more intn mai ly, on any such set of initial data, S n p, there is a point

x and corresponding T > 0 such that if the string starts from rest at x*, then at

time T, all of the heids lie on 1. Duffin also observed that if fi(s) is odd in s,

1 1 i e n, (1.1) possesses a 4T periodic sc.iution obtained from the above one by

appropriate reflecticns about 0 and T*. Duffin called the type of solution obtained in

Theorem 1.2 an "Gppositional mode of vibration". For linear fi' this mode has the

highest frequency.

During a recent vsit to Carnegie-Mellon University, Duffin posed to us the question

of whether there exist solutlons of the type obtained above which start on S outside

of P and after s(,re time interval all lie on E. In 13 we will give some partial

answers to this questirnn. In §2, some sharper versions of Theorem 1.2 will be obtained

for a more general class of equations than (1.1). In particular we will prove that (1.1)

possesses an unbounded connected set of initial data in P of the type given by Theorem

1.2.

§2. Continua of positive solutions

Let x (x1,.. x) and let g(x) = (g1 (x),...,gn(x)) satisfy

(gl) q e C (Rn, Rn)

and

(g2) g 1 -'I P\ 0..

Note that the 9 det 'iqi L, (1.1) and (1.3) satisfies (g2 ). Consider the system of

ordinary differenlis. o;1 ,qeti -is:

(2.1) mtKI + q.(x) 0 1 4i 4n

where m > 0. In this ecttinn more general versions of Theorem 1.2 will be established

for (2.1). tiy replacing qi(x) by gi(x)mi-, we can assume m i = 1 and study

(2.2) x ' 
t q(x.) = ""
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We will seek solutions of (2.2) which pass through the origin at say t = 0 and at a

second value of t, say t = T, have zero velocity, i.e. x'(T) = 0. If x(t) is such

a solution and y(t)= x(T - t), then y(O) = x(T), y'(O) = x'(T) = 0, y(T) x(0) =

0, and y"(t) = x"(T - t) -g(x(T - t)) = -g(y(t)). Therefore y is a solution of the

type Duff in found. Our main result will be the existence of an unbounded connected set of

data in P for which there exist solutions of Duffin type for (2.2) To state this more

precisely, note that the time T at which x' = 0 is not known a priori. By rescaling

the time variable, t + T-It, we can make the new time interval 1. Still calling t the

independent variable, (2.2) becomes

(2.3) x " + T2g(x) 0

and

(2.4) x(O) = 0 x'(1)

Thus we seek T e (0,-) and x in the class of functions satisfying (2.4) such that

(T,x) satisfies (2.3). Using (2.4) to integrate (2.3) shows

(2.5) x'(t) = T2 J g(x(T))d"
t

and

(2.6) x(t) = 
2 f (j g(x~r))dT)ds T 2 x
0 s

Solutions of (2.2) of the desired type will be obtained from the equivalent formulation P-:

(2.6).

Let E denote the set of x e C([,1I, nj satisfying (2.4). The form of K in

(2.61 and (gl) imply K: E + E and K is compact. Set

P = ly e EIyi(t) ; 0, t e [0,1], 1 4 i 4 n •

Then P is a closed cone in E and (2.6) and (g2 ) show K: P + P. It is convenient to

replace K by a new operator with a stronger positivity property. Let C > 0 and define

Ce Rl by t = (..). Now set

t I

(2.7) (KEx)(t) -= f ( (g(x(T)) + E)dT)ds
"s

-3-
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Let

Q = {y e P ly(O) > 0, and yi(t) > 0, t e (0,11, 1 4 1 ( ni

Then (2.7) shows KC: P +Q and is compact.

Consider the operator equation

(2.8) x = JJKC x

By a solution of (2.8) we mean a pair (1,x) e R x E satisfying (2.8). Our goal is to

obtain information about solutions of (2.8) (with P > 0) for £ > 0 and use it to

deduce results about solutions of (2.6). There is a useful theorem about operator

equations of the form (2.8) that can be exploited for this purpose. Let

R = fr e Rir > 01.

Proposition 2.9: Let E be a real Banach space and K: E + E be compact. Suppose there

exists a closed cone P in E such that K: P + P. Then the operator equation

x w K x has a component - i.e. a maximal closed connected set - of solutions, C,

such that (0,0) e C and C is unbounded in k+ x P.

Proof: Proposition 2.9 probably exists in the literature but we do not know a

reference. Here is a brief proof. Consider K restricted to P. By the Dugundji

Extension Theorem (2], there exists an extension K of K to E which is compact and

whose range lies in P. Consider the equation

(2.10) x = U Kx

By Theorem 3.2 of [3], (2.10) has a component C of solutions meeting (0,0) and unbounded

in x E. Since the range of K lies in P, C C ft x P. But in P, K - K so the

proposition obtains.

Applying Proposition 2.9 to our K. and P and recalling that KC: P 2. we see

that (2.8) possesses a component of solutions, C ., meeting (0,0) and unbounded in

e x Q. It is now an easy exercise to let e - 0 and use C and the compactness ,f

K to pass to a limit and get a component of solutions C of (2.6) which is unt'.unde1 it,

R x P. However it may be the case that q(0) = 0 and if so, (W,0) is a trivia,

-4-



solution of (2.6) for all P e R
+ . 

Then C possibly just consists of these trivial

solutions. We will show that even if g(0) = 0, (2.6) has lots of nontrivial solutions.

Towards that end, define a mapping of R x E to R
n 

by P (Wx) = x(1). The form

of (2.8) shows if (),x) e C and P - 0, then x - 0. Therefore 0 e P Cc. Since

CE is a connected set and P1  is continuous, P1 Cc is a connected subset of Rn

which lies in P. Letting £ + 0 will then yield:

Theorem 2.11: Let g satisfy (gl) and (g2). Then there exists an unbounded connected

set D C P such that 0 e D and for any n e D\(O}, there exists a solution x of

(2.2) and T(O1) > 0 such that x(O) = 0, x(T) = )a, and x'(T) = 0.

Two preliminary results are needed to obtain Theorem 2.11.

Lemma 2.12: For each e > 0, set X= {x e IC(,x) e Cr1. Then X is unbounded and

connected.

Proof: By Proposition 2.9, and above remarks, C is unbounded and connected inC

x z. Therefore X . its projection on I in connected. If X is bounded, there

is a sequence of points (PmXm) E CE such that Um * - and x, is bounded in E. The

equation satisfied by (P axa) and (92) yield

x (t) t 1 t

(2.13) -i - (x.(T))t)dT)d , - = - - ( - )2 t
0 0

for each component xuii of X,. Setting t - I and letting m + s shows

(2.14} 0 ) ,--

a contradiction. Therefore X is unbounded in E.

Lema 2.15: For each E > 0, P C is unbounded in P.

Prouf: E.quation (2.13) shown that if (px) e C(, then x (t) < 0 in (0,1), x (t) > C

in (6,1I, and Al(t) > 0 in (0,I) for 1 4 i 4 a. Therefore each component of x(res$r.

e'hevas tis maxtmm in 10,11 at t - I (reap. t = 0). Consequently

I(1)1 " max Ix(t) I "
te(o,1] L

- tr Pem . 2, c o s unbounded and clearly lies in P.

7s..
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Proof of Theorem 2.11: A standard theorem from point set topology [4, Chapter 1]

guarantees the existence of D provided that for any neighborhood 0 of 0 in Rn (i P,

there is a 4 e a0, P(4) > 0, and a solution x of (2.3) - (2.4) with T
2 

= and

x(1) = 4. Thus choose any such set C and a decreasing sequence £ + 0. By Lemma 2.15m j .

and previous remarks, for each m, P C is an unbounded connected subset of P which
m"-

contains 0. Hence there is a (pm,xm ) e C with xm(1) e aC. since a is bounded
m F

m

in P and the maximum of Ixm(t)I occurs at t 
= 1, (x,) is a bounded sequence in

L . Suppose for the moment that the Um'S are also bounded. Then differentiating

+ 2
(2.13) shows that (pm,X m) is bounded in R

+ 
X C . Consequently using (2.13) again we

+ 2
can asume (pm,x m) converges in R x C to some (U,x), a solution of (2.6) with

x e P and x(1) e a0. Clearly U > 0 for otherwise x = 0 contrary to x(1) e ao.

Thus the theorem is proved once we establish that (m) is a bounded sequence.

If (o) is not bounded, we can assume Wm as m + . Consider (xm(
1
) C a0.

Therefore there is an a > 0 and a subsequence of xm  such that for at least one

component of xm, say xm3, we have xmj(l) ) a along the subsequence. Since xmj(t)

1
is a concave function, Xmj(t) ) 1 for all t e [ By the boundedness of 0 again,

Lh,!re is a constant M > 0 such that I, K. 1 independently of m. Hypothesis (92)
L

implies there is a > 0 such that

n

for all 4 such that F . M and 0 4 4. € 
M, i J. Therefore by (2.13),

2-.
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Ix m(1) .2 1 1

(2.17) 1 ( j Ig(x (t))I2 d't)ds
m O0 1

0 1/2 m 1

Letting m + in (2.17) leads to

(2.18) 0 ;0
4

a contradiction. Therefore pm is a bounded sequence and Theorem 2.11 is proved.

For each C e V\{Of. there is a > 0 and x e P such that (Ux) is a solution

of (2.6) with x0) It is natural to ask whether there is a component, C, of

solution of (2.6) in k+ P such that PIC V. We do not believe such a simple

statement holds without more assumptions However in this direction we have

Corollary 2.19: For each e D\101, there exists an unbounded connected set A of

solutions of (2.6) in lex P and a point (iu,x) e A 4 such that PI 1(,x) .

Proof: Let E e V. B osrcin i where gm P P(Ij 'x) and

-I- %-

+ 2 +,x ) e C . Moreover (U x) converges in R C to -- ,x) e R P and

Letn m + m in1.7 last

P (u,x) = .consider any bounded open set Qi in lex P which contains (u,x). Then

(UmXm e a for large m. Since is unbounded, CI 3 for all large m.
m m

it follows as in the proof of Theorem 2.11 that 3Q contains a solution of (2.6) and

there exists AE as stated above.

If g(O) 60, (2.6) possesses the family of trivial solutions 1(a,0)Ip e inmp n

x P. If t() h0, we have

Corollary 2 20: If g() $ 0, (2.6) possesses an unbounded component of nontrivial

solutions, C, in R x P which meets (0,0) and satisfies PIC is unbounded in P.

Proof: Let a. be any bounded open neighborhood of (0,0) in l P. The argument of-.

-7-
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Corollary 2.19 or Theorem 2.11 shows that MS A C * for all m. Hence as earlier
m

there is an unbounded component C of solutions of (2.6) in R
+ 

x P which meets (0,0).

Equation (2.6) shows if (U,x) e C and p * 0, then x(t) > 0 for t > 0 so -"

C\{(0,0)} consists of nontrivial solutions. Lastly (2.17) shows P1 C cannot be

bounded.

Remark 2.21: If S denotes the set of nontrivial solutions of (2.6) in R
+ 
x P, as we

approach infinity along S, x(1) + 0 or x(1) + -, for otherwise the estimate (2.17)

shows the corresponding P's must be bounded. Then (2.6) implies the x's are also

bounded, a contradiction.

To study the behavior of S more closely, in particular near x = 0 or - requires

more information about g near 0 and infinity. We will give a simple example of such

an analysis.

By (2.6),

(2.22) X(1) f U g(x(T)) dT)ds
2x(1)I = 0 I JIx(,)I

1 0 1 

..Suppose that

(2.23) Ig(C)lp, > al~lc '

(Note that this holds for a = 1 for the g obtained from (1.1) via (1.3)). Then (2.22)

- (2.23) show there is a constant a, such that

(2.24) 1 ) M a 1 Ix(1)I- 1

-1%

If a > 1, P + 0 as x(1) + while if a = 1, a ( a Since (2.24) also holds for

(2.8) uniformly in c > 0, we see if a = 1, C and therefore any set obtained from it

by taking limits lies in [0,a
1 ] x P and contains (0,0).

In 11J, Duffin conjectured that if S is as in Theorem 1.2, then there exists

n e S, T(n) > 0, and a solution x(t) of (1.1) such that x(0) = 0, x'(0) =

-8-

" .-°



x'(T) =0, and x(t) e P for all t e [0,T]. one cannot expect this to occur in the

generality of (2.6). For example consider

(2.25) Xw + V'(x) =0

2
where V e C (P,R) and g =V satisfies (92 )' Suppose further that

V(x)+ 0 uniformly as 1xI + ~ (E.g. take n 1 and V(x) -(-x + 1)-1). Since

(2.25) is a Hamiltonian system

(2.26) .1.I't1 (t) t) constant

independent of t for any solution x of (2.25). Let T in e PI there is T > 0

and x, a solution of (2.1) with x(0) - 0, x'(0) - nl, x'(t) -0, and

x(t) e P for all t e [0,T]. We claim T is bounded in P. Indeed let n e Twith

corresponding x(t). By (2.26),

(2.27) .1 Ix'(0) 12 + V(x(0)) n2 2 + V(0) = '(x(T))
2 2

if T were unbounded, (2.27) shows V(P) must also be unbounded, contrary to our

assumption on V at ~

Next we will show that Duf fin's conjecture holds in his setting.

Theorem 2.28: Suppose g satisfies (g) (92) and (2.23) with a 1. Then T

contains an unbounded component containing 0.

Proof. These hypotheses, Theorem 2.11, and the remarks following (2.21) show (2.6)

possesses a component of solutions, C, unbounded in [0,al- 1J x P with (0,0) e C. Fox

1/2 ~1/2
any (p,x) e C, the change of time scale t + T P t, x(t) =y(T) =X(uI T)

transforms solutions of (2.3) -(2.4) to solutions of (2.2) with y(0) 0 =y'(P 1/2)

Consider

T jy-(0) 1/ x- 2x(0) (1L,x) e Cj

A priori, y'(0) is not defined for (0,0) e C But if we approach (0,0) along - by

(2.5)

W- 1/2 X'(0) U 1l/2 f g(x(1))ds 0

0

-9-
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so 0 e T . It follows that the map (,x) + is/2( C s continuous.

Therefore is connected. Since (i,x) e C implies p e [O,a 1
-  

while jx(O)} is

unbounded via (2.5) and the unboundedness of {x(O)l in E, T must be unbounded and the

Theorem is proved.

§3. Some remarks on other solutions of (2.2)

Another question Duffin posed in [1] is whether (1.1) possesses solutions of the type

found earlier other than "positive" ones. Some partial answers will be given in this

sect ton.

To begin suppose g satisfies

(94 )= M + o(1) as + 0

where M is an n x n matrix and M: P + P. Associated with (2.3) - (2.4) is a linear

eigenvalue problem

(3.1) y" +p
2
My 

= 
0, 0 < t < 1

(3.2) y(O) = 0 = y'()

An eigenfunction of (3.1) - (3.2) must have the form y(t) = (sin~k -- )st)c where

k e N, c e 0, and satisfies

(3.3) k -- 1) .2c 
= 

o2Mc.
2

If 1 2 in a simple (or odd multiplicity) eigenvalue of (3.1) - (3.2), a global

bifurcation theorem from (3] provides the existence of nontrivial solutions of (2.2)

bifurcating from (P
2
,0).

Rather than work in this generality, we specialize to Duffin's case where

f > -ais + o(s) as s + 0 in R, I C j C n + I where a. ) h > 0. Then (3.1)

.)." became s

a. a i+1

(3.4) yi (-= + -y- m (y. + y i+)

I N C n and '0 0 = Yn+1 " Since mi, a3 > 0, M is a tridiagonal matrix with

positive entries alonq its main and two neighboring diagonals. A computation shows that

ihe ,1 t(!rmi !trltf):t the principle minors of M are all Jx)sitive. Consequently M is an

-1 1)-



x' (T) - 0, and x(t) e P for all t e 10,TJ. One cannot expect this to occur in the

generality of (2.6). For example consider

(2.25) x" + V'(x) - 0

2where V e C (P,R) and g = V' satisfies (g2 ). Suppose further that

V(x) + 0 uniformly as IxI + . (E.g. take n - 1 and V(x) - -(x + 11"1. Since

(2.25) is a Hamiltonian system

(2.26) 2 Ix'(t)12  V(x(t)) E constant(2.26)

independent of t for any solution x of (2.25). Let T = in e PI there is T > 0

and x, a solution of (2.1) with x(0) = 0, x'(0) - n, x1(t) - 0, and

x(t) e P for all t e [0,T]}. We claim T is bounded in P. Indeed let n e T with

corresponding x(t). By (2.26),

(2.27) Ix(0)12 + V(X())0) - V(x(T))

2 2

If T were unbounded, (2.27) shows V(P) must also be unbounded, contrary to our

assumption on V at -.

Next we will show that Duffin's conjecture holds in his setting.

Theorem 2.28: Suppose g satisfies (gl), (g2) and (2.23) with a 1. Then T

contains an unbounded component containing 0.

Proof. These hypotheses, Theorem 2.11, and the remarks following (2.21) show (2.6)

possesses a component of solutions, C, unbounded in (0,al - ] X P with (0,0) e C. For

any (,x) e C, the change of time scale t + T &a t, x(t) = y(T) - x(U t)

transforms solutions of (-.3) - (2.4) to solutions of (2.2) with y(0) 0 y'(W /2).

Consider

T jy'(0) - 2 X'(0)IJx) e C

A priori, y'(0) is not defined for (0,0) e C. But if we approach (0,0) along C, by

(2.5)

1/ 1/2x'1(0) I g /2 g(x(l))ds " 0

0

-9-
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so 0 e T • It follows that the map (i,x) V 1/2 x'(0) C + is continuous.

Therefore T is connected. Since (v,x) e C implies p e (0,a 1 ] while {x'(0)j is

unbounded via (2.5) and the unboundedness of {x(0)} in E, T must he unbounded and the

Theorem is proved.

§3. Some remarks on other solutions of (2.2)

Another question Duffin posed in (1] is whether (1.1) possesses solutions of the type

found earlier other than "positive" ones. Some partial answers will be given in this

section.

To begin suppose g satisfies

(g4 ) g() = ME + o(ICI) as E + 0

where M is an n x n matrix and Mz P + P. Associated with (2.3) - (2.4) is a linear

eigenvalue problem . -

(3.1) y" + p
2
My 0, 0 < t < 1

(3.2) y(O) = 0 = y,()

An eigenfunction of (3.1)- (3.2) must have the form y(t) (sin(k- -1)lt)c where
2

k e N, c e IF, and satisfies

(3.3) (k -_) 12c _ 02Mc.
2

If P in a simple (or odd multiplicity) eigenvalue of (3.1) - (3.2), a global

bifurcation theorem from (3] provides the existence of nontrivial solutions of (2.2)

2bifurcating from (P ,0).

Rather than work in this generality, we specialize to Duffin's case where

f s) -a.s + o(s) as s + 0 in R, 1 j ( n + 1 where a. ) h > 0. Then (3.1)

becomes

a. a. +
(3.4) y a ( + + -

-+'-

I ( < . n and y0 = 0 =n+1 Since mi, a. > 0, M is a tridiagonal matrix with . .:

positive entries along its main and two neighboring diagonals. A computation shows that

tb. de terminants of the principle minors of M are all positive. Consequently M is an

2..
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Ii-10-"
r 2""



oscillation matrix [5] and its eigenvalues are all positive and simple: 3

V1 > ... > Vn > 0 and any eignvector cj corresponding to v has j - I sign

changes. (This means if cj - (cj, ... ,cjn) the sequence of components changes sign

exactly j-1 times). In particular c1  has no sign changes and we can assume c1 e P.

The eigenvalues of (3.1) - (3.2) are then

1 )22
(k- 2 W ~ i  k N '°

(3.5) {i k e NJ

1 2 i-1 1 2 -1

These eigenvalues may not be simple; possibly (k - ) 1 = 0 V for some2 i 2- p

choice of indices. However for most choices of ai, mj they will be simple. In any

event we have

1 2Theorem 3. 6: Let fi e C and satisfy (1.3), 1 4 i 4 n + 1. Suppose P is an

eigenvalue of (3.1) - (3.2) of odd multiplicity. Then (1.1) possesses a component C of -

nontrivial solutions in R x E which contains (P 2,0) and either is unbounded or meets

(r2 ,0) for some other eigenvalue r2  of (3.1) - (3.2).

Proof. The system (1.1) is eigenvalent to the compact operator equation (2.6) where

Kx LX + o( x) as x + 0 and

t 1
(Lx)(t) = f (f Mx(T)dT)ds

0 s

Since P2 is of odd multiplicity the conclusion follows immediately from the global

bifurcation theorem of (3].

-1 2
Remark 3.7: Since v > VI for j > 1, (3.5) shows U - (' 1 ) IF is the smallest

eigenvalue of (3.1) - (3.2) and is simple. A standard bifurcation theorem then says that

near (U1,0), C is a curve of the form u(s) = p, + )11, x(s) - sy1 + o(181) for s

near 0. Since c e P, y (sin ) c e P. In fact y, e Q which is an open set in
12 1

the C1  topology. Then for s > 0 and small, (u(s), x(s)) lies in et x Q. Under a

stronger assumption on g as defined by (1.1), this curve extends to an unbounded

connected set of solutions of (1.1) in + 
x.

I-
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Corollary 3.8: Under the hypotheses of Theorem 3.6, suppose g: P\{O} into the interior

of P. Then (1.1) contains a component of solutions C
+  

unbounded in R
+ 

x Q and which

meets (u 1 ,0).

+Proof: By Remark 3.7 and Theorem 3.6, we need only show that C fl (* x Q) has the

desired property. Results from (3] or [7] show that the curve mentioned in Remark 3.7

either is part of an unbounded connected set of solutions of (1.1) in e x Q or it meets

a point (u,x) e R
+  

Q other than tPj0). If the latter case occurs, there is a

sequence (NXm) C fl(R+ x Q) such that (umXm) (p,x). This implies some

component z of x satisfies z'(0) = 0 or z(t) = 0 for some t e [0,1]. But (2.5) -

(2.6) and our additional assumption on g show this is only possible if z = 0 and x -

0. Then (Vmxm) + (,0) where P lies in the set defined by (3.5). Writing (2.6) as

x Kx
(3.9) -M= U -

m m

and letting m + , we see x Ix I converges to a solution ofm

(3.10) y - LiLy

where y e P, Nyl = 1, p p 1. We claim this is impossible. Indeed y has the form

y = aU (sin(k )rt)c

y .2
p

where the Q s are scalers, each cj appears at most once, and if ci = c1 , kp > I.
p pp

Let c1  denote an eigenvalue of M*, the adjoint M corresponding to v
1
. We can

assume c e P. Let y; = (sin - t) c * Since c is orthogonal to ck if k * 1,

taking the inner product of (3.9) with Y, yields
1 *m

(3.11) f y y1 , dt 0
0

But y1 e Q and DyI = I implies the left hand side of (3.11) must be positive. Thus

C n(R
+ 

x Q) is unbounded and the proof is complete.

Remark 2.12: As was noted earlier, the eigenvalues (3.5) of (3.1) - (3.2) are simple in

general and then the argument of Remark 3.7 and [3] or (7] yive curves and continua of

-12-
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solutions of (1.1) emanating from the corresponding bifurcation points. Globally the

argument of Corollary 3.8 cannot be used to keep these solution branches from meeting each

other. However we see that in general there are many distinct small amplitude solutions

of (1.1) which do not lie in x P. In particular the small amplitude solutions

associated with the sigenvalues (4v 1 ) will have the same "nodal "shapes as the

eigenvectors cj, 1 4 j 4 n.

Variational methods can also be used to obtain information about small solutions of

(1.1) irrespective of multiplicity considerations for the eigenvaluea of (3.1) -(3.2). A

brief sketch of how this can be done will be given. Let

and let

gi(x) -f i(x i-1 + X i f fi(x i + x i+1)

for I i -C n where xo -xn+, 0. Note that if

n+ 1
VC~c) F - (x + xi

then (~ x) g W~x. Consider the variational problem: Find critical points of
i

2
(3.13) I(X) - f V(x(t)dt

0
subject to the constraint

2 2n
(3.14) IsL ( x (t)) dt =r

where x lies in the class of functions

Jx(t) e W' ([O.2],Rn)lx(O) =0 and W( + a) -x(1 a ), s e O,]

The left hand side of (3.15) can be taken as the square of the norm in this space. The

Euler equations satisfied by any smooth critical point of this problem are

(3.16) fst i. + Ug - 0 , (i n

i.e. (2.3) where UI is the corresponding Lagrange multiplier. The choice of function

space shows x also satisfies (2.4).

-13-



A bifurcatton theorem due to B~hme [81 or Marino [9) can be applied to the above

situation and shows that each eiqenvalue of (3.1) - (3.2) is a bifurcation point for

(1.1). However it does not give us information, for a multiple eigenvalue, about the

z,nape of the corresponding solution of (1.1).

Remark 3.17: Results of van Groesen [101 (based on work of Ekeland and Lasry [11] show

that if

H(x,x ) . m lxil + V(x)

and V is even, convex, and satisfies other technical geometrical conditions, then for

each c > 0, the energy surface H = c contains at least n distinct solutions of (1.1) O

of the type we seek. No information is obtained however about their shape.

14-
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